THE

LINUX

o)

COMMANDS
HANDBOOK

Table of Contents

Preface
Introduction to Linux and shells
man

Is

cd
pwd
mkdir
rmdir
mv

cp
open
touch
find

In

9zip
gunzip
tar
alias
cat
less
tail

wcC
grep

sort

uniq
diff
echo
chown
chmod
umask
du

df
basename
dirname
ps

top

kill
killall
jobs

bg

fg

type
which
nohup
xargs
vim
emacs
nano
whoami
who

su

sudo

passwd
ping
traceroute
clear
history
export
crontab
uname
env
printenv

Conclusion

Preface

The Linux Commands Handbook follows the 80/20
rule: learn in 20% of the time the 80% of a topic.

| find this approach gives a well-rounded overview.

This book does not try to cover everything under the
sun related to Linux and its commands. It focuses on
the small core commands that you will use the 80% or
90% of the time, trying to simplify the usage of the
more complex ones.

All those commands work on Linux, macOS, WSL,
and anywhere you have a UNIX environment.

| hope the contents of this book will help you achieve
what you want: get comfortable with Linux.

This book is written by Flavio. | publish
programming tutorials every day on my website
flaviocopes.com.

You can reach me on Twitter @flaviocopes.

Enjoy!

https://flaviocopes.com/
https://twitter.com/flaviocopes

Introduction to Linux and
shells

Linux is an operating system, like macOS or Windows.

It is also the most popular Open Source and free, as in
freedom, operating system.

It powers the vast majority of the servers that
compose the Internet. It's the base upon which
everything is built upon. But not just that. Android is
based on (a modified version of) Linux.

The Linux "core" (called kernel) was born in 1991 in
Finland, and it went a really long way from its humble
beginnings. It went on to be the kernel of the GNU
Operating System, creating the duo GNU/Linux.

There's one thing about Linux that corporations like
Microsoft and Apple, or Google, will never be able to
offer: the freedom to do whatever you want with your
computer.

They're actually going in the opposite direction,
building walled gardens, especially on the mobile side.

Linux is the ultimate freedom.

It is developed by volunteers, some paid by
companies that rely on it, some independently, but
there's no single commercial company that can dictate
what goes into Linux, or the project priorities.

Linux can also be used as your day to day computer. |
use macOS because | really enjoy the applications,
the design and | also used to be an iOS and Mac apps
developer, but before using it | used Linux as my main
computer Operating System.

No one can dictate which apps you can run, or "call
home" with apps that track you, your position, and
more.

Linux is also special because there's not just "one
Linux", like it happens on Windows or macOS.
Instead, we have distributions.

A "distro" is made by a company or organization and
packages the Linux core with additional programs and
tooling.

For example you have Debian, Red Hat, and Ubuntu,
probably the most popular.

Many, many more exist. You can create your own
distribution, too. But most likely you'll use a popular
one, one that has lots of users and a community of
people around it, so you can do what you need to do
without losing too much time reinventing the wheel
and figuring out answers to common problems.

Some desktop computers and laptops ship with Linux
preinstalled. Or you can install it on your Windows-
based computer, or on a Mac.

But you don't need to disrupt your existing computer
just to get an idea of how Linux works.

| don't have a Linux computer.

If you use a Mac you need to know that under the
hood macOS is a UNIX Operating System, and it
shares a lot of the same ideas and software that a
GNU/Linux system uses, because GNU/Linux is a free
alternative to UNIX.

UNIX is an umbrella term that groups many
operating systems used in big corporations and
institutions, starting from the 70's

The macOS terminal gives you access to the same
exact commands ['ll describe in the rest of this
handbook.

Microsoft has an official \Windows Subsystem for Linux
which you can (and should!) install on Windows. This
will give you the ability to run Linux in a very easy way
on your PC.

But the vast maijority of the time you will run a Linux
computer in the cloud via a VPS (Virtual Private
Server) like DigitalOcean.

A shell is a command interpreter that exposes to the
user an interface to work with the underlying operating
system.

It allows you to execute operations using text and
commands, and it provides users advanced features
like being able to create scripts.

This is important: shells let you perform things in a
more optimized way than a GUI (Graphical User
Interface) could ever possibly let you do. Command
line tools can offer many different configuration options
without being too complex to use.

https://en.wikipedia.org/wiki/Unix
https://docs.microsoft.com/en-us/windows/wsl/install-win10

There are many different kind of shells. This post
focuses on Unix shells, the ones that you will find
commonly on Linux and macOS computers.

Many different kind of shells were created for those
systems over time, and a few of them dominate the
space: Bash, Csh, Zsh, Fish and many more!

All shells originate from the Bourne Shell, called sh .
"Bourne" because its creator was Steve Bourne.

Bash means Bourne-again shell. sh was proprietary
and not open source, and Bash was created in 1989
to create a free alternative for the GNU project and the
Free Software Foundation. Since projects had to pay
to use the Bourne shell, Bash became very popular.

If you use a Mac, try opening your Mac terminal. That
by default is running ZSH. (or, pre-Catalina, Bash)

You can set up your system to run any kind of shell,
for example | use the Fish shell.

Each single shell has its own unique features and
advanced usage, but they all share a common
functionality: they can let you execute programs, and
they can be programmed.

In the rest of this handbook we'll see in detail the most
common commands you will use.

man

The first command | want to introduce is a command
that will help you understand all the other commands.

Every time | don't know how to use a command, | type
man <command> to get the manual:

o0 App!
LS((3L) BSD General Commands Manual

NAME
1s — list directory contents

SYNOPSIS
1s [-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwxl%] [file ...]

DESCRIPTION
For each operand that names a file of a type other than directory,
1s displays its name as well as any requested, associated informa-
tion. For each operand that names a file of type directory, ls dis—
plays the names of files contained within that directory, as well as
any requested, associated information.

If no operands are given, the contents of the current directory are
displayed. If more than one operand is given, non-directory oper—
ands are displayed first; directory and non-directory operands are
sorted separately and in lexicographical order.

The following options are available:

@ Display extended attribute keys and sizes in long (-1) out-
put.

-1 (The numeric digit *‘one''.) Force output to be one entry

This is a man (from manual) page. Man pages are an
essential tool to learn, as a developer. They contain so
much information that sometimes it's almost too much.

The above screenshot is just 1 of 14 screens of
explanation for the 1s command.

Most of the times when I'm in need to learn a
command quickly | use this site called tldr pages:
hitps://tidr.sh/. It's @ command you can install, then
you run it like this: tldr <command> , which gives you a
very quick overview of a command, with some handy
examples of common usage scenarios:

https://tldr.sh/

List directory contents.

- List files one per line:
1s -1

- List all files, including hidden files:
1ls -a

- Long format list (permissions, ownership, size and modification date) of all
files:

1ls -la
- Long format list with size displayed using human readable units (KB, MB, GB)
1s -1lh

- Long format list sorted by size (descending):
1s -1S

- Long format list of all files, sorted by modification date (oldest first):
1s -1tr

This is not a substitute for man , but a handy tool to
avoid losing vyourself in the huge amount of
information present in a man page. Then you can use
the man page to explore all the different options and
parameters you can use on a command.

Is

Inside a folder you can list all the files that the folder
contains using the 1s command:

1s

If you add a folder name or path, it will print that folder
contents:

1s /bin

ed launchctl mv tcsh
expr link pax test
hostname unlink

kill pwd wait4path
ksh i rm zsh

ls accepts a lot of options. One of my favorite
options combinations is -al . Try it:

1ls —al /bin

L] #i flaviocopes — fist
-» ~ 1s -al /bin
total 5120
drwxr-xr-x@ 37 root wheel
drwxr-xr-x 30 root wheel o
—rWXI'-Xr-x root wheel B [
—r-XI'-Xr-x root wheel B bash
—rWXI'-Xr-x root wheel 3 cat
=IrWXI'-Xr-x root wheel 3 chmod
—I'WXI'-Xr-X root wheel 3 cp
—IrWXI'-XIr-X root wheel 3 csh
—IWXI'-XI'-X root wheel : date
—rWXI'-Xr-x root wheel B dd
—rWXI'-Xr-Xx root wheel B df
—IrWXI'-Xr-x root wheel 3 echo
~IrWXI'=-Xr-x root wheel 3 ed
—I'WXI'-Xr-X root wheel 8 expr
-IWXI'-Xr-x root wheel 8 hostname
—rWXI'-XI-X root wheel : kill
—r-XIr-Xr-x root wheel B ksh
—rWXI'-Xr-x root wheel 121296 3 launchctl

=

BRRRRERRRRRRRE R R PR R R

compared to the plain 1s , this returns much more
information.

You have, from left to right:

 the file permissions (and if your system supports
ACLs, you get an ACL flag as well)

« the number of links to that file

« the owner of the file

« the group of the file

« the file size in bytes

« the file modified datetime

« the file name

This set of data is generated by the 1 option. The a
option instead also shows the hidden files.

Hidden files are files that start with a dot (.).

cd

Once you have a folder, you can move into it using the

cd command. cd means change directory. You
invoke it specifying a folder to move into. You can
specify a folder name, or an entire path.

Example:

mkdir fruits
fruits

Now you are into the fruits folder.

You can use the .. special path to indicate the
parent folder:

The # character indicates the start of the comment,
which lasts for the entire line after it's found.

You can use it to form a path:

mkdir fruits

mkdir cars
fruits
../cars

There is another special path indicator which is .
and indicates the current folder.

You can also use absolute paths, which start from the
root folder / :

14

cd /etc

This command works on Linux, macOS, WSL,
and anywhere you have a UNIX environment

pwd

Whenever you feel lost in the filesystem, call the pwd
command to know where you are:

It will print the current folder path.

mkdir

You create folders using the mkdir command:

mkdir fruits

You can create multiple folders with one command:

mkdir dogs cars

You can also create multiple nested folders by adding
the -p option:

mkdir -p fruits/apples

Options in UNIX commands commonly take this form.
You add them right after the command name, and they
change how the command behaves. You can often
combine multiple options, too.

You can find which options a command supports by
typing man <commandname> . Try now with man mkdir
for example (press the q key to esc the man page).
Man pages are the amazing built-in help for UNIX.

rmdir

Just as you can create a folder using mkdir , you can
delete a folder using rmdir :

mkdir fruits
rmdir fruits

You can also delete multiple folders at once:

mkdir fruits cars
rmdir fruits cars

The folder you delete must be empty.

To delete folders with files in them, we'll use the more
generic rm command which deletes files and folders,
using the -rf options:

rm —rf fruits cars

Be careful as this command does not ask for
confirmation and it will immediately remove anything
you ask it to remove.

There is no bin when removing files from the
command line, and recovering lost files can be hard.

mv

Once you have a file, you can move it around using
the mv command. You specify the file current path,
and its new path:

touch
mv pear new_pear

The pear file is now moved to new_pear . This is how
you rename files and folders.

If the last parameter is a folder, the file located at the
first parameter path is going to be moved into that
folder. In this case, you can specify a list of files and
they will all be moved in the folder path identified by
the last parameter:

touch pear

touch apple

mkdir fruits

mv pear apple fruits

cp
You can copy a file using the c¢p command:

touch
cp apple another_apple

To copy folders you need to add the -r option to
recursively copy the whole folder contents:

mkdir fruits
cp -r fruits cars

open

The open command lets you open a file using this
syntax:

open <filename>

You can also open a directory, which on macOS opens
the Finder app with the current directory open:

open <directory name>

| use it all the time to open the current directory:

open .
The special . symbol points to the current
directory, as .. points to the parent directory

The same command can also be be used to run an
application:

open <application name>

touch

You can create an empty file using the touch
command:

touch apple

If the file already exists, it opens the file in write mode,
and the timestamp of the file is updated.

find

The find command can be used to find files or
folders matching a particular search pattern. It
searches recursively.

Let's learn it by example.

Find all the files under the current tree that have the
.js extension and print the relative path of each file
matching:

find . —-name '*x.js'

It's important to use quotes around special characters
like x to avoid the shell interpreting them.

Find directories under the current tree matching the
name "src":

find . —-type d -name src

Use -type f to search only files, or -type 1 to only
search symbolic links.

-name IS case sensitive. use -iname to perform a
case-insensitive search.

You can search under multiple root trees:

find folderl folder2 —-name filename.txt

Find directories under the current tree matching the
name "node_modules" or 'public':

find . -type d —-name node_modules —-or —name public

You can also exclude a path, using -not -path :

find . -type d —-name '*.md' -not -path 'node_module:

You can search files that have more than 100
characters (bytes) in them:

find . —-type f -size +100c

Search files bigger than 100KB but smaller than 1MB:

find . -type f -size +100k -size -1M

Search files edited more than 3 days ago

find . -type f -mtime +3

Search files edited in the last 24 hours

find . —-type f -mtime -1

You can delete all the files matching a search by
adding the -delete option. This deletes all the files
edited in the last 24 hours:

find . -type f -mtime -1 -delete

You can execute a command on each result of the
search. In this example we run cat to print the file
content:

find . -type f -exec cat {} \;

notice the terminating \; . {} is filled with the file
name at execution time.

In

The 1n command is part of the Linux file system
commands.

It's used to create links. What is a link? It's like a
pointer to another file. A file that points to another file.
You might be familiar with Windows shortcuts. They're
similar.

We have 2 types of links: hard links and soft links.

Hard links

Hard links are rarely used. They have a few
limitations: you can't link to directories, and you can't
link to external filesystems (disks).

A hard link is created using

ln <original> <link>

For example, say you have a file called recipes.txt.
You can create a hard link to it using:

ln recipes.txt newrecipes.txt

The new hard link you created is indistinguishable
from a regular file:

0 flavio

+ ~ ls -al newrecipes.txt
-rw-r--r-- 1 flavio staff 8 Sep 2 11:25 newrecipes.txt

+ o~

Now any time you edit any of those files, the content
will be updated for both.

If you delete the original file, the link will still contain
the original file content, as that's not removed until
there is one hard link pointing to it.

® - is i — -fish
+ ~ ln recipes.txt newrecipes.txt
+ ~ cat newrecipes.txt
recipes

+ =~ rm recipes.txt

+ ~ cat newrecipes.txt
recipes

S |

Soft links

Soft links are different. They are more powerful as you
can link to other filesystems and to directories, but
when the original is removed, the link will be broken.

You create soft links using the -s option of 1n :

ln -s <original> <link>

For example, say you have a file called recipes.txt.
You can create a soft link to it using:

ln —-s recipes.txt newrecipes.txt

In this case you can see there's a special 1 flag
when you list the file using 1s -al , and the file name
has a @ atthe end, and it's colored differently if you
have colors enabled:

+ ~ ls -al newrecipes.txt
lrwxr-xr-x 1 flavio staff 11 Sep 2 11:26 @ -> recipes.txt

+ o~

Now if you delete the original file, the links will be
broken, and the shell will tell you "No such file or
directory" if you try to access it:

[X] #i flavio — fish / 1 y — -fish — 6310
+ ~ ln -s recipes.txt newrecipes.txt
+ ~ cat newrecipes.txt
recipes
+ ~ rm recipes.txt
+ =~ cat newrecipes.txt

cat: newrecipes.txt: No such file or directory

~

gzip

You can compress a file using the gzip compression
protocol named LZ77 using the gzip command.

Here's the simplest usage:

gzip filename

This will compress the file, and append a .gz
extension to it. The original file is deleted. To prevent
this, you can use the -c option and use output
redirection to write the output to the filename.gz file:

gzip —-c filename > filename.gz

The -c option specifies that output will go to the
standard output stream, leaving the original file
intact

Or you can use the -k option:

gzip -k filename

There are various levels of compression. The more
the compression, the longer it will take to compress
(and decompress). Levels range from 1 (fastest, worst
compression) to 9 (slowest, better compression), and
the default is 6.

You can choose a specific level with the -<NUMBER>
option:

https://en.wikipedia.org/wiki/LZ77_and_LZ78

gzip -1 filename

You can compress multiple files by listing them:

gzip filenamel filename2

You can compress all the files in a directory,
recursively, using the -r option:

gzip -r a_folder

The -v option prints the compression percentage
information. Here's an example of it being used along
with the -k (keep) option:

o0 #& flavio — fish /U -fish
+ ~ gzip -kv wget-log
wget-log: 49.7% -- replaced with wget-log.gz

-» ~

gzip can also be used to decompress a file, using
the -d option:

gzip -d filename.gz

gunzip

The gunzip command is basically equivalent to the
gzip command, except the -d option is always
enabled by default.

The command can be invoked in this way:

gunzip filename.gz

This will gunzip and will remove the .gz extension,
putting the result in the filename file. If that file exists,
it will overwrite that.

You can extract to a different filename using output
redirection using the -c option:

gunzip —-c filename.gz > anotherfilename

tar

The tar command is used to create an archive,
grouping multiple files in a single file.

Its name comes from the past and means ftape
archive. Back when archives were stored on tapes.

This command «creates an archive named
archive.tar with the content of file1 and file2 :

tar —cf archive.tar filel file2

The c option stands for create. The f option is
used to write to file the archive.

To extract files from an archive in the current folder,
use:

tar —xf archive.tar

the x option stands for extract

and to extract them to a specific directory, use:

tar —xf archive.tar -C directory

You can also just list the files contained in an archive:

[
+ ~ tar -tf archive.tar
filel

tar is often used to create a compressed archive,
gzipping the archive.

This is done using the z option:

tar —czf archive.tar.gz filel file2

This is just like creating a tar archive, and then running
gzip onit.

To unarchive a gzipped archive, you can use gunzip ,
or gzip -d , and then unarchive it, but tar -xf will
recognize it's a gzipped archive, and do it for you:

tar —xf archive.tar.gz

alias

It's common to always run a program with a set of
options you like using.

For example, take the 1s command. By default it
prints very little information:

[
bash-3.2% 1s
words . txt
bash-3.2%

while using the -al option it will print something
more useful, including the file modification date, the
size, the owner, and the permissions, also listing
hidden files (files starting with a

o0
bash-3.2% 1s
words. txt
bash-3.2% 1s -al
total @
drwxr-xr-x 3 flavio staff 96 Sep 3 15:20 .

drwxr-xr-x+ 55 flavio staff 1760 Sep 3 15:20 ..
-rw-r--r-- 1 flavio staff ® Sep 3 15:20 words.txt
bash-3.2%

You can create a new command, for example | like to
callit 11 ,thatisanaliasto 1s -al .

You do it in this way:

1i="'1s -al’

Once you do, you can call 11 just like it was a
regular UNIX command:

[X] fla
bash-3.2% alias 11="1
bash-3.2%
bash-3.2% 11

total @

drwxr-xr-x 3 flavio staff 96 Sep 3 15:20 .
drwxr-xr-x+ 55 flavio staff 1760 Sep 3 15:20 ..
-rw-r--r-- 1 flavio staff ® Sep 3 15:20 words.txt
bash-3.2$ ||

Now calling alias without any option will list the
aliases defined:

[X
bash-3.2% alias
alias 11="1s -al'

bash-3.2%

The alias will work until the terminal session is closed.

To make it permanent, you need to add it to the shell
configuration, which could be ~/.bashrc or
~/.profile Or ~/.bash_profile if you use the Bash
shell, depending on the use case.

Be careful with quotes if you have variables in the
command: using double quotes the variable is
resolved at definition time, using single quotes it's
resolved at invocation time. Those 2 are different:

lsthis="1s $PwD"
lscurrent="'1s $PWD'

$PWD refers to the current folder the shell is into. If
you now navigate away to a new folder, 1lscurrent
lists the files in the new folder, 1sthis still lists the
files in the folder you were when you defined the alias.

cat

Similar to tail in some way, we have cat . Except
cat can also add content to a file, and this makes it
super powerful.

In its simplest usage, cat prints a file's content to the
standard output:

cat file

You can print the content of multiple files:

cat filel file2

and using the output redirection operator > you can
concatenate the content of multiple files into a new
file:

cat filel file2 > file3

Using >> you can append the content of multiple files
into a new file, creating it if it does not exist:

cat filel file2 >> file3

When watching source code files it's great to see the
line numbers, and you can have cat print them using
the -n option:

cat -n filel

file:///private/var/folders/tn/h8lfq1sj7c33c0p30qgkd3mw0000gn/C/unix-command-tail

You can only add a number to non-blank lines using -
b , or you can also remove all the multiple empty lines
using -s .

cat is often used in combination with the pipe
operator | to feed a file content as input to another
command: cat filel | anothercommand .

less

The 1less command is one | use a lot. It shows you
the content stored inside a file, in a nice and
interactive Ul.

Usage: 1less <filename> .

bash-scripting — less /Users/flaviocopes/www/flaviocopes.com/content/post/cli/bash-scripting — less index.md — 72x...
=]

title: "Introduction to Bash Shell Scripting"

date: 2019-01-15T07:00:00+02:00

description: "A detailed overview to scripting the Bash Shell"
tags: cli

Shell scripting is an powerful way to automate tasks that you regularly
execute on your computer.

In this tutorial I give an extensive overview of shell scripting, and wi
11 be the base reference for more in-depth and advanced tutorials on cre
ating practical shell scripts.

> Check out my [introduction to Bash](/bash/) post.

Bash gives you a set of commands that put together can be used to create
little programs, that by convention we call scripts.

Note the difference. We don't say Bash programming but Bash scripting, a
nd we don't call Bash scripts "Bash programs". This is because you can g

Once you are inside a less session, you can quit by
pressing q .

You can navigate the file contents using the up and

down Kkeys, or using the space bar and b to
navigate page by page. You can also jump to the end
of the file pressing 6 and jump back to the start
pressing g .

You can search contents inside the file by pressing /
and typing a word to search. This searches forward.
You can search backwards using the ? symbol and
typing a word.

This command just visualises the file's content. You
can directly open an editor by pressing v . It will use
the system editor, which in most cases is vim .

Pressing the F key enters follow mode, or watch
mode. When the file is changed by someone else, like
from another program, you get to see the changes
live. By default this is not happening, and you only see
the file version at the time you opened it. You need to
press ctrl-C to quit this mode. In this case the
behaviour is similar to running the tail -f
<filename> command.

You can open multiple files, and navigate through
them using :n (to go to the next file) and :p (to go
to the previous).

tail

The best use case of tail in my opinion is when called
with the -f option. It opens the file at the end, and
watches for file changes. Any time there is new
content in the file, it is printed in the window. This is
great for watching log files, for example:

tail -f /var/ /system. log

To exit, press ctrl-C .

You can print the last 10 lines in a file:

tail -n 10 <filename>

You can print the whole file content starting from a
specific line using + before the line number:

tail -n +10 <filename>

tail can do much more and as always my advice is
to check man tail .

WC

The wc command gives us useful information about
a file or input it receives via pipes.

>> test.txt
wCc test.txt
1 1 5 test.txt

Example via pipes, we can count the output of running
the 1s -al command:

1s —-al | wc
6 47 284

The first column returned is the number of lines. The
second is the number of words. The third is the
number of bytes.

We can tell it to just count the lines:

wc -1 test.txt

or just the words:

wCc -w test.txt

or just the bytes:

wc —c test.txt

Bytes in ASCII charsets equate to characters, but with
non-ASCIl charsets, the number of characters might
differ because some characters might take multiple
bytes, for example this happens in Unicode.

In this case the -m flag will help getting the correct
value:

wCc —-m test.txt

grep

The grep command is a very useful tool, that when
you master will help you tremendously in your day to
day.

If you're wondering, grep stands for global
regular expression print

You can use grep to search in files, or combine it
with pipes to filter the output of another command.

For example here's how we can find the occurences of
the document.getElementById line inthe index.md file:

grep document.getElementById index.md

LN flavio — bas flavio — bash — 77x7

bash-3.2% grep document.getElementById index.md

document. getElementById("button').addEventListener('click', O => {
document . getElementById('button').addEventListener('click', O = {

bash-3.2%

Using the -n option it will show the line numbers:

grep —-n document.getElementById index.md

L N flavio — bash — 77x7
bash-3.2% grep -n document.getElementById index.md
60:document . getElementById('button').addEventListener('click', () => {
128: document.getElementById('button').addEventListener('click', (O => {

ash

bash-3.2%

One very useful thing is to tell grep to print 2 lines
before, and 2 lines after the matched line, to give us
more context. That's done using the -c option, which
accepts a number of lines:

grep —nC 2 document.getElementById index.md

(X} flavio 5%16

avio 3
bash-3.2% grep -nC 2 document.g ex.md
58-
59-"*js
60:document . getElementById('button').addEventListener('click', () => {
61- //item clicked
62-1)

126-"""js

127-window.addEventListener('load', () => {

128: document.getElementById('button').addEventListener('click', (O => {
129- setTimeout(() = {

130- items.forEach(item => {

bash-3.2%

Search is case sensitive by default. Use the -i flag
to make it insensitive.

As mentioned, you can use grep to filter the output of
another command. We can replicate the same
functionality as above using:

less index.md | grep -n document.getElementById

LA J flavio — avio — bash — 77x7
bash-3.2% less index.md | grep -n document.getElementById
60:document.getElementById('button').addEventListener('click', () => {
128: document.getElementById('button').addEventListener('click"', (O => {

bash-3.2%

The search string can be a regular expression, and
this makes grep very powerful.

Another thing you might find very useful is to invert the

result, excluding the lines that match a particular

string, using the -v

[N
bash-3.2% 1s -al
total 120
drwxr-xr-x 4 flavio
drwxr-xr-x 138 flavio
-PW-P--p-- 1 flavio
-FPW-r--r-- 1 flavio

bash-3.2% 1s -al | grep
total 120

drwxr-xr-x 4 flavio
drwxr-xr-x 138 flavio
-FW-F--r-- 1 flavio
bash-3.2$% I

option:

staff 128
staff 4416
staff 49556
staff 5659
-v index.md

staff 128
staff 4416
staff 49556

3 @8:15 .

22 14:58 ..

3 09:37 banner.png
11 2020 index.md

3 08:15 .
22 14:58 ..
3 09:37 banner.png

sort

Suppose you have a text file which contains the
names of dogs:

[N
Roger
Syd
Vanille

Luna
Ivica

Tina

This list is unordered.

The sort command helps us sorting them by name:

® i flavio — fis
+ =~ sort dogs.txt
Ivica
Luna
Roger
Syd

Tina
Vanille

-+ ~

Use the r option to reverse the order:

® & flavio — fis
+ =~ sort -r dogs.txt
Vanille
Tina
Syd

Roger
Luna

Sorting by default is case sensitive, and alphabetic.
Use the --ignore-case option to sort case insensitive,
and the -n option to sort using a numeric order.

If the file contains duplicate lines:

Y flav 60x15
GNU nano 2.0.6 Modified

Roger
Syd
Vanille
Luna
Ivica

Tina
Roger
Syd

[Cancelled]
a8 Get Helly WriteOuldN Read Fid{ Prev PaQjld Cut Tex@@ Cur Pos
Wl Exit [Justifylll] Where IgY Next Palll UnCut To Spel

You can use the -u option to remove them:

[I # flavio — fish [Users/flavic
+ =~ sort -u dogs.txt
Ivica
Luna
Roger

Syd
Tina

sort does not just works on files, as many UNIX
commands it also works with pipes, so you can use on
the output of another command, for example you can
order the files returned by 1s with:

ls | sort

sort is very powerful and has lots more options,
which you can explore calling man sort .

LX)

SORT(1) BSD General Commands Manual SORT(1)

NAME

sort -- sort or merge records (lines) of text and binary files

SYNOPSIS

sort [-bcCdfghiRMmnrsuVz] [-k fieldi[,field2]] [-S memsize] [-T dir] [-t char] [-o put
[file ...]

sort --help

sort --version

DESCRIPTION

The sort utility sorts text and binary files by lines. A line is a record separated from the sub-
sequent record by a newline (default) or NUL '\@' character (-z option). A record can contain any
printable or unprintable characters. Comparisons are based on one or more sort keys extracted
from each line of input, and are performed lexicographically, according to the current locale's
collating rules and the specified command-line options that can tune the actual sorting behavior.
By default, if keys are not given, sort uses entire lines for comparison.

The command line options are as follows:

-c, --check, -C, --check=silentlquiet
Check that the single input file is sorted. If the file is not sorted, sort produces the
appropriate error messages and exits with code 1, otherwise returns @. If -C or
--check=silent is specified, sort produces no output. This is a "silent" version of -c.

-m, --merge
Merge only. The input files are assumed to be pre-sorted. If they are not sorted the
output order is undefined.

-0 output, --output=output
Print the output to the output file instead of the standard output.

-S size, --buffer-size=size
Use size for the maximum size of the memory buffer. Size modifiers %,b,K,M,G,T,P,E,Z,Y
can be used. If a memory limit is not explicitly specified, sort takes up to about 90% of
available memory. If the file size is too big to fit into the memory buffer, the tempo-
rary disk files are used to perform the sorting.

--temporary-directory:
Store temporary files in the directory dir. The default path is the value of the environ-
ment variable TMPDIR or /var/tmp if TMPDIR is not defined.

-u, --unique
Unique keys. Suppress all lines that have a key that is equal to an already processed
one. This option, similarly to -s, implies a stable sort. If used with -c or -C, sort
also checks that there are no lines with duplicate keys.

Stable sort. This option maintains the original record order of records that have an
equal key. This is a non-standard feature, but it is widely accepted and used.

--version
Print the version and silently exits.

uniq
uniq is a command useful to sort lines of text.

You can get those lines from a file, or using pipes from
the output of another command:

uniq dogs.txt

1s | uniq
You need to consider this key thing: uniq will only
detect adjacent duplicate lines.

This implies that you will most likely use it along with

sort :

sort dogs.txt | uniq

The sort command has its own way to remove
duplicates with the -u (unique) option. But uniq has
more power.

By default it removes duplicate lines:

® ® & flavio— fish /Users/flav
+ =~ cat dogs.txt
Roger
Syd
Vanille
Luna
Ivica
Tina
Roger
Syd
+ ~ sort dogs.txt | uniq
Ivica
Luna
Roger
Syd
Tina
Vanille

- e

You can tell it to only display duplicate lines, for
example, with the -d option:

sort dogs.txt | uniq -d

® ® & flavio— fish /Us
+ =~ cat dogs.txt
Roger
Syd
Vanille
Luna
Ivica

Tina

Roger

Syd

+ «~ sort dogs.txt | uniq -d
Roger

Syd

- el

You can use the -u option to only display non-
duplicate lines:

® ® & flavio— fish
+ =~ cat dogs.txt
Roger
Syd
Vanille
Luna
Ivica
Tina

Roger

Syd

+ =~ sort dogs.txt | uniq -u
Ivica

Luna
Tina
Vanille

» ~ |

You can count the occurrences of each line with the -
c option:

® ® & flavio— fish
+ =~ cat dogs.txt
Roger
Syd
Vanille
Luna
Ivica
Tina
Roger
Syd
+ sort dogs.txt | uniqg -c¢
Ivica
Luna
Roger
Syd
Tina
Vanille

Use the special combination:

sort dogs.txt | uniq -c | sort —-nr

to then sort those lines by most frequent:

flavio — fish /Use vio — -fish — 44x8
sort dogs.txt | uniq -c | sort -nr
Syd
Roger
Vanille
Tina
Luna
Ivica

+

2
2
1
1
1
1

+

diff

diff is a handy command. Suppose you have 2
files, which contain almost the same information, but
you can't find the difference between the two.

diff will process the files and will tell you what's the
difference.

Suppose you have 2 files: dogs. txt and
moredogs.txt . The difference is that moredogs.txt
contains one more dog name:

[# flavio — fish /
-+ =~ cat dogs.txt
Roger
Syd
+ ~ cat moredogs.txt

Roger
Syd
Vanille

-+ ~

diff dogs.txt moredogs.txt Wwill tell you the second
file has one more line, line 3 with the line vanilte :

2a3

> Vanille

-~

If you invert the order of the files, it will tell you that the
second file is missing line 3, whose content is

Vanille .

3d2

< Vanille

-~

Using the -y option will compare the 2 files line by

line:

LN @l

~ diff -y doags.txt moredogs.t
Roger

Syd
> Vanille

The -u option however will be more familiar to you,
because that's the same used by the Git version
control system to display differences between

versions:

[X] # flavio sh /Users/flavio — -fish — 67x8
~ diff -u dogs.txt moredogs.txt
--- dogs.txt 2020-09-07 08:54:56.000000000 +0200
+++ moredogs.txt 2020-09-07 08:55:09.000000000 +0200
@@ -1,2 +1,3 @@
Roger

Syd
+Vanille

~

Comparing directories works in the same way. You
must use the -r option to compare recursively
(going into subdirectories):

[X
+ testing ls dirl
dogs.txt
+ testing ls dir2
dogs. txt
+ testing diff -u dirl dir2
diff -u dirl/dogs.txt dir2/dogs.txt

--- dirl/dogs.txt 2020-09-07 08:54:56.000000000 +0200
+++ dir2/dogs.txt 2020-09-07 08:55:09.000000000 +0200
@@ -1,2 +1,3 @@
Roger
Syd
+Vanille
testing

In case you're interested in which files differ, rather
than the content, use the r and q options:

[X te: s
testing diff -rq ir
Files dirl/dogs.txt and dir2/dogs.txt differ

testing |

There are many more options you can explore in the
man page running man diff :

o0 lavio — man /Us¢ vio — less «
DIFF(1) User Commands DIFF(1)

NAME
diff - compare files line by line

SYNOPSIS
diff [OPTION]... FILES

DESCRIPTION
Compare files line by line.

-i --ignore-case
Ignore case differences in file contents.

--ignore-file-name-case
Ignore case when comparing file names.

--no-ignore-file-name-case
Consider case when comparing file names.

-E --ignore-tab-expansion
Ignore changes due to tab expansion.

-b --ignore-space-change
Ignore changes in the amount of white space.

ignore-all-space
Ignore all white space.

-B --ignore-blank-lines
Ignore changes whose lines are all blank.

-I RE --ignore-matching-lines=RE
Ignore changes whose lines all match RE.

--strip-trailing-cr
Strip trailing carriage return on input.

--text
Treat all files as text.

-C NUM --context[=NUM
Output NUM (default 3) lines of copied context.

-U NUM --unified[=NUM
Output NUM (default 3) lines of unified context.

--label LABEL
Use LABEL instead of file name.

-p --show-c-function
Show which C function each change is in.

-F RE --show-function-line=RE

echo

The echo command does one simple job: it prints to
the output the argument passed to it.

This example:
"hello"

will print hello to the terminal.

We can append the output to a file:

"hello" >> output.txt

We can interpolate environment variables:

"The path variable is $PATH"

[N] flavio i 15
bash-3.2% echo "The path variable is $PATH"
The path variable is /fusr/local/bin:/usr/bin:/bin:/usr/sbin:/

sbin:/Library/Apple/usr/bin
bash-3.2%

Beware that special characters need to be escaped
with a backslash \ . ¢ for example:

o0 flavio
bash-3.2$% echo The cost is $5
The cost is

bash-3.2% echo The cost is \$5
The cost is $5
bash-3.2%

This is just the start. We can do some nice things
when it comes to interacting with the shell features.

We can echo the files in the current folder:

We can echo the files in the current folder that start
with the letter o :

[oF 3

Any valid Bash (or any shell you are using) command
and feature can be used here.

You can print your home folder path:

[X
bash-3.2% echo ~
/Users/flavio

bash-3.2$% I

You can also execute commands, and print the result
to the standard output (or to file, as you saw):

$(1ls —al)

[N flavi
bash-3.2% echo $(ls -al)
total 8 drwxr-xr-x 4 flavio staff 128 Sep 3 15:43 . drwxr-xr-
x+ 55 flavio staff 176@ Sep 3 15:20 .. -rw-r--r-- 1 flavio st

aff 6 Sep 3 15:43 output.txt -rw-r--r-- 1 flavio staff @ Sep
3 15:20 words.txt
bash-3.2%

Note that whitespace is not preserved by default. You
need to wrap the command in double quotes to do so:

[N flav
bash-3.2% echo "$(1ls -
total 8
drwxr-xr-x 4 flavio staff 128 Sep 143
drwxr-xr-x+ 55 flavio staff 1760 Sep =200
-rw-r--r-- 1 flavio staff 6 Sep 143 output.txt
-rw-r--r-- 1 flavio staff @ Sep :20 words.txt
bash-3.2$ ||

You can generate a list of strings, for example ranges:

{1..5}

[N] flav
bash-3.2% echo {1..5
12345

bash-3.2%

chown

Every file/directory in an Operating System like Linux
or macOS (and every UNIX systems in general) has
an owner.

The owner of a file can do everything with it. It can
decide the fate of that file.

The owner (and the root user) can change the
owner to another user, too, using the chown
command:

chown <owner> <file>

Like this:

chown flavio test.txt

For example if you have a file that's owned by root ,
you can't write to it as another user:

* 0 # flavio — fish
+ ~ sudo touch test.txt
+ =~ echo test >> test.txt
<W> fish: An error occurred while redirecting file 'test.txt'

open: Permission denied

-+ o~

You can use chown to transfer the ownership to you:

0 # flavi
+ =~ sudo touch test.t
+ ~ echo test >> test.txt
<W> fish: An error occurred while redirecting file 'test.txt'

open: Permission denied
+ ~ sudo chown flavio test.txt
+ ~ echo test >> test.txt

-+ o~

It's rather common to have the need to change the
ownership of a directory, and recursively all the files
contained, plus all the subdirectories and the files
contained in them, too.

You can do so using the -rR flag:

chown -R <owner> <file>

Files/directories don't just have an owner, they also
have a group. Through this command you can
change that simultaneously while you change the
owner:

chown <owner>:<group> <file>

Example:

chown flavio:users test.txt

You can also just change the group of a file using the
chgrp command:

chgrp <group> <filename>

chmod

Every file in the Linux / macOS Operating Systems
(and UNIX systems in general) has 3 permissions:
Read, write, execute.

Go into a folder, and run the 1s -al command.

[X} M billtracker — fish
+ billtracker git:() x 1s -al
total 1576
drwxr-xr-x@ 13 flavio staff 416 Feb 17 2020 .
drwxr-xr-x@ 14 flavio staff 448 Apr 29 17:11 ../
-rw-r--r--@ 1 flavio staff 6148 Jun 24 2018 .DS_Store
drwxr-xr-x@ 14 flavio staff 448 Sep 3 18:49 .git/
-rw-r--r--@ 1 flavio staff 214 Jun 23 2018 .gitignore
-rw-r--r--@ 1 flavio staff 52 Jun 23 2018 babel.config.js
-rw-r--r--@ 1 flavio staff 485000 Jul 1 2018 package-lock.json
-rw-r--r--@ 1 flavio staff 1083 Jul 1 2018 package.json
-rw-r--r--@ 1 flavio staff 101 Jun 24 2018 postcss.config.js
drwxr-xr-x@ 5 flavio staff 160 Jun 24 2018 public/
drwxr-xr-x@ 6 flavio staff 192 Jul 1 2018 src/
-rw-r--r--@ 1 flavio staff 27350 Jun 24 2018 tailwind.js
-rw-r--r--@ 1 flavio staff 265963 Jun 24 2018 yarn.lock
+ billtracker git:(X

The weird strings you see on each file line, like drwxr-
xr-x , define the permissions of the file or folder.

Let's dissect it.
The first letter indicates the type of file:

« - means it's a normal file
« d means it's a directory
e 1 meansit's alink

Then you have 3 sets of values:

o The first set represents the permissions of the
owner of the file

« The second set represents the permissions of the
members of the group the file is associated to

o The third set represents the permissions of the
everyone else

Those sets are composed by 3 values. rwx means
that specific persona has read, write and execution
access. Anything that is removed is swapped with a

- , which lets you form various combinations of
values and relative permissions: rw-, r— , r-x ,
and so on.

You can change the permissions given to a file using
the chmod command.

chmod can be used in 2 ways. The first is using
symbolic arguments, the second is using numeric
arguments. Let's start with symbols first, which is more
intuitive.

You type chmod followed by a space, and a letter:

« a stands for all

e u stands for user
« g stands for group
e o stands for others

Then you type either + or - to add a permission, or
to remove it. Then you enter one or more permissions
symbols (r, w, x).

All followed by the file or folder name.

Here are some examples:

chmod a+r filename
chmod a+rw filename
chmod o-rwx filename

You can apply the same permissions to multiple
personas by adding multiple letters before the +/ - :

chmod og-r filename

In case you are editing a folder, you can apply the
permissions to every file contained in that folder using
the -r (recursive) flag.

Numeric arguments are faster but | find them hard to
remember when you are not using them day to day.
You use a digit that represents the permissions of the
persona. This number value can be a maximum of 7,
and it's calculated in this way:

« 1 if has execution permission
o 2 if has write permission
e 4 if has read permission

This gives us 4 combinations:

no permissions
can execute

can write

can write, execute
can read

can read, execute
can read, write

[]
~ o)) (] B w N = S

can read, write and execute

We use them in pairs of 3, to set the permissions of all
the 3 groups altogether:

chmod 777 filename
chmod 755 filename
chmod 644 filename

umask

When you create a file, you don't have to decide
permissions up front. Permissions have defaults.

Those defaults can be controlled and modified using
the umask command.

Typing umask with no arguments will show you the
current umask, in this case 0022 :

o0 flavio —
bash-3.2% umask
0022

bash-3.2%

What does 0022 mean? That's an octal value that
represent the permissions.

Another common value is 0002 .

Use umask -S to see a human-readable notation:

o0 flavio —
bash-3.2% umas
0022

bash-3.2% umask -S

U=rwX, g=rx, 0=rx
bash-3.2$ |J

In this case, the user (u), owner of the file, has read,
write and execution permissions on files.

Other users belonging to the same group (g) have
read and execution permission, same as all the other
users (o).

In the numeric notation, we typically change the last 3
digits.

Here's a list that gives a meaning to the number:

read, write, execute
read and write

read and execute
read only

write and execute
write only

execute only

[]
~ (o)) (6] B w N = S

no permissions

Note that this numeric notation differs from the one we
use in chmod .

We can set a new value for the mask setting the value
in numeric format:

002

or you can change a specific role's permission:

g+r

du

The du command will calculate the size of a directory
as a whole:

du

® flavio — bash [User
bash-3.2% du
S

bash—B.Zi |

The 32 number here is a value expressed in bytes.

Running du * will calculate the size of each file
individually:

® flavio — bash [Users/flavio — bash — 38x6
bash-3.2% du *
8 Card.vue
8 CardList.vue

8 Form.vue
8 HelloWorld.vue
bash-3.2$ ||

You can set du to display values in MegaBytes using
du -m , and GigaBytes using du -g .

The -n option will show a human-readable notation
for sizes, adapting to the size:

o0 fla
bash-3.2$ du -h vuehandbook
4.0K vuehandbook/12-vue-watchers

4.0K vuehandbook/@7-vue-single-file-components
4.0K vuehandbook/19-vue-components-communication
84K vuehandbook/20-vuex

48K vuehandbook/21-bonus-vue-router
12K vuehandbook/@1-vue-introduction
120K vuehandbook/@2-vue-first-app
8.0K vuehandbook/@6-vue-components
536K vuehandbook/@4-vue-devtools

Adding the -a option will print the size of each file in
the directories, too:

[N flavio —
bash-3.2% du -ah vuehandbook
4.0K vuehandbook/12-vue-watchers/index.md
4.0K vuehandbook/12-vue-watchers
4.0K vuehandbook/@7-vue-single-file-components/index.md
4.0K vuehandbook/@7-vue-single-file-components
4.0K vuehandbook/19-vue-components-communication/index.md
4.0K vuehandbook/19-vue-components-communication

36K vuehandbook/2@-vuex/vuex-store.png

12K vuehandbook/2@-vuex/index.md

36K vuehandbook/2@-vuex/codesandbox. png

84K vuehandbook/2@-vuex

12K vuehandbook/ .DS_Store

32K vuehandbook/21-bonus-vue-router/banner. jpg
16K vuehandbook/21-bonus-vue-router/index.md

A handy thing is to sort the directories by size:

du -h <directory> | sort -nr

and then piping to head to only get the first 10
results:

[X — bash) -
bash-3.2% du -h vuehandbook | sort -nr | head
932K vuehandbook/@5-vue-vscode
636K vuehandbook/.git/objects/75
544K vuehandbook/@3-vue-cli
536K vuehandbook/@4-vue-devtools

120K vuehandbook/@2-vue-first-app

88K vuehandbook/.git/objects/pack
88K vuehandbook/ .git/objects/b@
84K vuehandbook/20-vuex

76K vuehandbook/ .git/objects/6f
64K vuehandbook/ .git/objects/41
bash-3.2%

df

The df command is used to get disk usage
information.

Its basic form will print information about the volumes
mounted:

oo # flavio — fish /Users/flavio
>~ df
Filesystem 512-blocks Used Available Capacity iused ifree ¥iused Mounted on
/dev/disklsl 976490576 21974760 487735816 5% 488418 4881964462 /
devfs 375 375 0 10e% 649 [} /dev

/dev/diskls2 976490576 454785000 487735816 49% 4287975 4878164905 /System/Volumes/Data
/dev/diskls5 976490576 10485848 487735816 3% 5 4882452875 /private/var/vm
map auto_home [} [} o 100%] © 100% /System/Volumes/Data/home

+ o~

Using the -h option (df -h) will show those values
in a human-readable format:

L]
+ ~ df -h
Filesystem Size Used Avail Capacity iused ifree %iused Mounted on
/dev/disk1s1l 466Gi 10Gi 233Gi 5% 488418 4881964462 /
devfs 188Ki 188Ki @Bi 100% 649 ("] /dev
/dev/diskls2 466Gi 217Gi 233Gi 49% 4287984 4878164896 /System/Volumes/Data
/dev/diskls5 466Gi 5.0Gi 233Gi 5 4882452875 /private/var/vm
map auto_home 0Bi 0Bi OBi @ 100% /System/Volumes/Data/home

5 o

You can also specify a file or directory name to get
information about the specific volume it lives on:

00 #4 flavio — fish /Users/flavio — -fis
>~ df dev
Filesystem 512-blocks Used Available Capacity iused ifree %iused Mounted on
/dev/diskls2 976490576 454788176 487732640 49% 4287987 4878164893 0% /System/Volumes/Data

S o

basename

Suppose you have a path to a file, for example
/Users/flavio/test.txt .

Running

basename /Users/flavio/test.txt

will return the test.txt string:

+ ~ basename /Users/flavio/test.txt
test.txt

> ~

If you run basename on a path string that points to a
directory, you will get the last segment of the path. In
this example, /Users/flavio is a directory:

® #& flavio — fish | avio — -fish — 42x5
+ ~ basename /Users/flavio/
flavio

+ ~ basename /Users/flavio
flavio

= —~

dirname

Suppose you have a path to a file, for example
/Users/flavio/test.txt .

Running

dirname /Users/flavio/test.txt

will return the /uUsers/flavio string:

® & flavio — fist flavio — -fish — 44 x5
+ ~ dirname / avio/test.txt
/Users/flavio

-+ ~

PS

Your computer is running, at all times, tons of different
processes.

You can inspect them all using the ps command:

o0

+ ~ ps
PID TTY CMD

59474 ttys000 :00.13 /usr/local/bin/fish -1
941 ttys002 :00.61 /usr/local/bin/fish -1

71366 ttys0e4 :01. -fish

4216 ttys009 :00.31 /usr/local/bin/fish -1

68714 ttys0e9 :20.82 hugo serve
5088 ttys013 102. -fish

+ o~

This is the list of user-initiated processes currently
running in the current session.

Here | have a few fish shell instances, mostly
opened by VS Code inside the editor, and an
instances of Hugo running the development preview of
a site.

Those are just the commands assigned to the current
user. To list all processes we need to pass some
options to ps .

The most common | use is ps ax :

#i flavio — fish

TIME COMMAND
/sbin/launchd
/usr/sbin/syslogd
/usr/libexec/UserEventAgent (System)
/System/Library/PrivateFrameworks/Uninstall. framework/Reso
/usr/libexec/kextd
/System/Library/Frameworks/CoreServices. framework/Versions
/System/Library/PrivateFrameworks/MediaRemote. framework/Su
/usr/sbin/systemstats --daemon
/usr/libexec/configd
/System/Library/CoreServices/powerd.bundle/powerd
/usr/libexec/logd
/usr/libexec/keybagd -t 15
/usr/libexec/watchdogd
/System/Library/Frameworks/CoreServices. framework/Framewor
/System/Library/CoreServices/iconservicesd
/usr/libexec/diskarbitrationd
/usr/libexec/coreduetd
/usr/libexec/opendirectoryd
/System/Library/PrivateFrameworks/ApplePushService. framewo
/Library/PrivilegedHelperTools/com.docker.vmnetd
/System/Library/CoreServices/launchservicesd
/usr/libexec/timed

A~

[y
NSONRPS&ANW

N

&S\II—‘QG#SS\DMN

[y
S W

The a option is used to also list other users
processes, not just our own. x shows processes
not linked to any terminal (not initiated by users
through a terminal).

As you can see, the longer commands are cut. Use
the command ps axww to continue the command
listing on a new line instead of cutting it:

#i flavio— fish

STAT TIME COMMAND
Ss 43:25.81 /sbin/launchd
Ss 2:03.82 /usr/sbin/syslogd
Ss 4:56.085 /usr/libexec/UserEventAgent (System)
?2? Ss 0:18.74 /System/Library/PrivateFrameworks/Uninstall. framework/Res
ources/uninstalld
v Wy Ge 1:36.94 /usr/libexec/kextd
98 ?? Ss 12:31.92 /System/Library/Frameworks/CoreServices.framework/Version
s/A/Frameworks/FSEvents. framework/Versions/A/Support/fseventsd
99 ?? Ss 0:21.48 /System/Library/PrivateFrameworks/MediaRemote.framework/S
upport/mediaremoted
?? Ss 22:56.23 /usr/sbin/systemstats --daemon
?? Ss :25.80 /usr/libexec/configd
Y 93 :32.38 /System/Library/CoreServices/powerd.bundle/powerd
?? Ss :48.48 /usr/libexec/logd
Y 53 :@1.46 /usr/libexec/keybagd -t 15
?? Ss :31.42 /usr/libexec/watchdogd
7 P S < 44:38.88 /System/Library/Frameworks/CoreServices.framework/Framewo
rks/Metadata. framework/Support/mds
A SR PSS 0:00.55 /System/Library/CoreServices/iconservicesd

We need to specify w 2 times to apply this
setting, it's not a typo.

You can search for a specific process combining
grep with a pipe, like this:

ps axww | grep "Visual Studio Code"

o0 # flavio —
+ ~ ps axww | grep "Visual Studio Code

367 7?72 S 40:32.47 /Applications/ .app/Contents/Mac0S/Elect
ron -psn_0_77843

566 ?? S 93:02.21 /Applications/ .app/Contents/Frameworks/
Code Helper (GPU).app/Contents/Mac0S/Code Helper (GPU) --type=gpu-process --field-tr
ial-handle=1718379636,842294607136@0466993,8181735644596197527,131072 --disable-featu
res=LayoutNG,PictureInPicture,SpareRendererForSitePerProcess --disable-color-correct
-rendering --gpu-preferences=KAAAAAAAAAAGAAAAAAAAAAAAYAAAAAAAEAAAAAAAAAAAAAAAAAAAAAG
BAAAGAAAAAAEAAAAAAAATAQAAAAAAABABAAAAAAAAGAEAAAAAAAAGAQAAAAAAACGBAAAAAAAAMAEAAAAAAAA
AAQAAAAAAAEABAAAAAAAASAEAAAAAAABQAQAAAAAAAFGBAAAAAAAAYAEAAAAAAABOAQAAAAAAAHABAAAAAAA

AeAEAAAAAAACAAQAAAAAAATGBAAAAAAAAKAEAAAAAAACYAQAAAAAAAKABAAAAAAAAGAEAAAAAAACWAQAAAAA
AALgBAAAAAAAAWAEAAAAAAADTAQAAAAAAANABAAAAAAAAZAEAAAAAAADGAQAAAAAAAOGBAAAAAAAABAEAAAA

AABAAAAAAAAAABGAAAACAAAAQAAAAAAAAAAYAAAATAAAAEAAAAAAAAAAGAAAACGAAABAAAAAAAAAABGAAAAS
AAAAQAAAAAAAAAAYAAAANAAAA --service-request-channel-token=4754214311225613582

The columns returned by ps represent some key
information.

The first information is PID , the process ID. This is
key when you want to reference this process in
another command, for example to Kill it.

Then we have 71T that tells us the terminal id used.
Then sTAT tells us the state of the process:

I a process that is idle (sleeping for longer than

about 20 seconds) R a runnable process S a
process that is sleeping for less than about 20
seconds T a stopped process U a process in
uninterruptible wait z a dead process (a zombie)

If you have more than one letter, the second
represents further information, which can be very
technical.

It's common to have + which indicates the process is
in the foreground in its terminal. s means the
process is a session leader.

TIME tells us how long the process has been running.

https://unix.stackexchange.com/questions/18166/what-are-session-leaders-in-ps

top
A quick guide to the top command, used to list the

processes running in real time

The top command is used to display dynamic real-
time information about running processes in the
system.

It's really handy to understand what is going on.

Its usage is simple, you just type +top , and the
terminal will be fully immersed in this new view:

o0 flavio — top 80x24
Processes: 574 total, 2 running, 572 sleeping, 3807 threads 11:39:53
Load Avg: 1.24, 1.93, 2.23 C(PU usage: 4.61% user, 3.68% sys, 91.69% idle

SharedLibs: 234M resident, 62M data, 16M linkedit.

MemRegions: 369828 total, 6215M resident, 163M private, 1603M shared.

PhysMem: 14G used (3684M wired), 1742M unused.

VM: 3080G vsize, 1991M framework vsize, 316459873(128) swapins, 322451178(0) swa
Networks: packets: 41309179/63G in, 44958830/24G out.

Disks: 68270763/1950G read, 43422129/1680G written.

COMMAND CPURRLS #TH #NQ #PORT MEM CMPRS
WindowServer 16.1 13:11:15 10 6607+ 845M+

com.docker.h 7.6 15:21:25 18 42 PEYLL]

top 7.4 00:01.00 1/1 27+ 8352K+

Terminal 6.0 04:31.43 11 436 1@5M

1Password 7 5.6 02:00:08 8 2473- 530M-

kernel_task 3.9 06:15:45 262/12 (] 510M+

Google Chrom 2.8 00:07.20 16 209 81M

Bear 2.1 41:08.16 12 176@- 557M-

Books 2.1 38:16.24 6 822 302M
cloudd 2.0 10:10.00 16

1.9 45:27.12 7

iy AR B

1.5 44:49.50 3

1.3 07:31.75 3

785+ 31M+
560 7208K
684 201M+
801 18M
210- 52M-

hidd
Music
bluetoothd
Rectangle

PRWNUVURPRURFRFONMPOO N

The process is long-running. To quit, you can type the
q letteror ctri-c .

There's a lot of information being given to us: the
number of processes, how many are running or
sleeping, the system load, the CPU usage, and a lot
more.

Below, the list of processes taking the most memory
and CPU is constantly updated.

By default, as you can see from the s%CPu column
highlighted, they are sorted by the CPU used.

You can add a flag to sort processes by memory
utilized:

top -0 mem

kill

Linux processes can receive signals and react to
them.

That's one way we can interact with running programs.

The kill program can send a variety of signals to a
program.

It's not just used to terminate a program, like the name
would suggest, but that's its main job.

We use it in this way:

<PID>

By default, this sends the TERM signal to the process
id specified.

We can use flags to send other signals, including:

-HUP <PID>
—-INT <PID>
—-KILL <PID>
-TERM <PID>
—CONT <PID>
-STOP <PID>

HUP means hang up. It's sent automatically when a
terminal window that started a process is closed
before terminating the process.

INT means interrupt, and it sends the same signal
used when we press ctrl-C in the terminal, which
usually terminates the process.

KILL is not sent to the process, but to the operating
system kernel, which immediately stops and
terminates the process.

TERM means terminate. The process will receive it
and terminate itself. It's the default signal sent by
kill .

CONT means continue. It can be used to resume a
stopped process.

SToP is not sent to the process, but to the operating
system kernel, which immediately stops (but does not
terminate) the process.

You might see numbers used instead, like kill -1
<PID> . In this case,

1 corresponds to HuP . 2 corresponds to INT . 9
corresponds to KILL . 15 corresponds to TERM .
18 corresponds to CONT . 15 corresponds to
STOP .

killall

Similar to the kill command, killall instead of
sending a signal to a specific process id will send the
signal to multiple processes at once.

This is the syntax:

killall <name>

where name is the name of a program. For example
you can have multiple instances of the top program
running, and killall top will terminate them all.

You can specify the signal, like with ki1l (and check
the kill tutorial to read more about the specific
kinds of signals we can send), for example:

killall -HUP top

jobs

When we run a command in Linux / macOS, we can
set it to run in the background using the & symbol
after the command. For example we can run top in
the background:

top &

This is very handy for long-running programs.

We can get back to that program using the fg
command. This works fine if we just have one job in
the background, otherwise we need to use the job
number. fg 1, fg 2 and so on. To get the job
number, we use the jobs command.

Say we run top & and then top -o mem & , SO we
have 2 top instances running. jobs will tell us this:

*0
bash-3.2% jobs
[1]- Stopped top
[2]+ Stopped top -0 mem

bash-3.2% ||

Now we can switch back to one of those using fg
<jobid> . To stop the program again we can hit cmd-
7 |

Running jobs -1 will also print the process id of each
job.

bg

When a command is running you can suspend it using
ctrl-Z .

The command will immediately stop, and you get back
to the shell terminal.

You can resume the execution of the command in the
background, so it will keep running but it will not
prevent you from doing other work in the terminal.

In this example | have 2 commands stopped:

® flavio — bash [Users/flavio — bash — 61x5
bash-3.2% jobs
[1]+ Stopped top (wd: ~)

[2]- Stopped top -o mem (wd: ~)
bash-3.2%

| can run bg 1 to resume in the background the
execution of the job #1.

| could have also said bg without any option, as the
default is to pick the job #1 in the list.

fg

When a command is running in the background,
because you started it with & at the end (example:
top & or because you put it in the background with
the bg command, you can put it to the foreground
using fg .

Running

will resume to the foreground the last job that was
suspended.

You can also specify which job you want to resume to
the foreground passing the job number, which you can
get using the jobs command.

oee #i flavio — bash [Users/flavio — bash — 61x5
bash-3.2% jobs

[1]+ Stopped top (wd: ~)

[2]- Stopped top -o mem (wd: ~)

bash-3.2%

Running fg 2 will resume job #2:

o0 flavio — ba 0
Processes: 574 total, 2 running, 572 sleeping, 3823 threads
16:12:54 Load Avg: 1.44, 1.60, 1.74
CPU usage: 3.76% user, 2.99% sys, 93.23% idle
SharedlLibs: 235M resident, 62M data, 16M linkedit.
MemRegions: 365072 total, 6752M resident, 166M private, 1835M
PhysMem: 15G used (3692M wired), 738M unused.
WM: 3092G vsize, 1991M framework vsize, 318057086(@) swapins,
Networks: packets: 43489522/66G in, 47248873/25G out.
Disks: 69434725/1968G read, 44158267/1695G written.

PID COMMAND %CPU TIME #TH #NQ #PORT m

1185 com.docker.h 9.1 15:40: 18
566 Code Helper 0.0 93:50. 8
85440 hugo 0.0 09:19. 20
229 WindowServer 16.0 13:29: 10
1152 1Password 7 9 02:10: 8
377 Bear @ 43:56. 13
605 Code Helper 1 63:35.69 27
42433 Photos .0 02:37. 7
0
2
6
3

42 2374M
267 1606M
29 1029M
6193+ 851M
2400 581M
1763 570M+
226 557M
535 524M
219 522M
() 514M
1238 506M
228 a71M]

588 Figma Helper 26:13.88 8
0 kernel_task 06:24:14 262/12
38992 Google Chrom 02:52:53 35
594 Code Helper 54:59.85 27

BPFNS®SRRREROANPPOIRS®

SoeowWwWeeeenN

type

A command can be one of those 4 types:

e an executable

« a shell built-in program
« a shell function

e an alias

The type command can help figure out this, in case
we want to know or we're just curious. It will tell you
how the command will be interpreted.

The output will depend on the shell used. This is Bash:

o0
bash-3.2% type 1s
1ls is hashed (/bin/1s)
bash-3.2% type cat
cat is /bin/cat
bash-3.2% type pwd
pwd is a shell builtin
bash-3.23% type 11
11 is aliased to *1ls -al'
bash-3.2% type top
top is hashed (/usr/bin/top)
bash-3.2% type jobs
jobs is a shell builtin
bash-3.2% type bg
bg is a shell builtin
bash-3.2% type kill
kill is a shell builtin
bash-3.2% type top
top is hashed (/usr/bin/top)
bash-3.2%

This is Zsh:

LN
flavio®mbp ~ % type 1ls
1ls is /bin/ls
flavio@mbp ~ % type cat
cat is /bin/cat
flavio®mbp ~ ¥ type pwd
pwd is a shell builtin
flavio@®mbp ~ % type 11
11 not found
flavio@®mbp ~ % alias ll="ls -al'
flavio®mbp ~ % type 11
11 is an alias for 1ls -al
flavio®mbp ~ ¥ type top
top is /usr/bin/top
flavio®mbp ~ % type jobs
jobs is a shell builtin
flavio®mbp ~ % type bg
bg is a shell builtin
flavio®mbp ~ % type kill
kill is a shell builtin
flavio®mbp ~ % type top
top is /usr/bin/top
flavio@mbp ~ %

This is Fish:

L i f
+ ~ type 1s
1ls is a function with definition
Defined in /usr/local/Cellar/fish/3.1.0/share/fish/functions/1ls.fish @ line 13
function ls --description 'List contents of directory'
set -1 opt -G
isatty stdout
and set -a opt -F
command ls $opt $argv
end
+ ~ type cat
cat is /bin/cat
-+ ~ type pwd
pwd is a builtin
-+ ~ type 11
11 is a function with definition
Defined in /usr/local/Cellar/fish/3.1.0/share/fish/functions/11.fish @ line 4
function 11 --description 'List contents of directory using long format'
1s -1h $argv
end
+ ~ type top
top is /usr/bin/top
+ ~ type jobs
jobs is a builtin
+ ~ type bg
bg is a function with definition
Defined in /usr/local/Cellar/fish/3.1.0/share/fish/config.fish @ line 274
function bg
set -1 jobbltn bg
builtin $jobbltn (__fish_expand_pid_args $argv)
end
+ ~ type kill
kill is a function with definition
Defined in /usr/local/Cellar/fish/3.1.8/share/fish/config.fish @ line 279
function kill
command kill (__fish_expand_pid_args $argv)
end
+ ~ type top
top is /usr/bin/top

+ o~

One of the most interesting things here is that for
aliases it will tell you what is aliasing to. You can see
the 11 alias, in the case of Bash and Zsh, but Fish
provides it by default, so it will tell you it's a built-in
shell function.

which

Suppose you have a command you can execute,
because it's in the shell path, but you want to know
where it is located.

You can do so using which . The command will return
the path to the command specified:

® ® i flavio—fish /Users/flavio — -fish — 40x6
~ which 1s

/bin/ls

+ ~ which docker

/usr/local/bin/docker

g

which will only work for executables stored on disk,
not aliases or built-in shell functions.

nohup

Sometimes you have to run a long-lived process on a
remote machine, and then you need to disconnect.

Or you simply want to prevent the command to be
halted if there's any network issue between you and
the server.

The way to make a command run even after you log
out or close the session to a server is to use the
nohup command.

Use nohup <command> to let the process continue
working even after you log out.

xargs

The xargs command is used in a UNIX shell to
convert input from standard input into arguments to a
command.

In other words, through the use of xargs the output
of a command is used as the input of another
command.

Here's the syntax you will use:

1 | xargs 2

We use a pipe (|) to pass the output to xargs . That
will take care of running the command2 command,
using the output of command1 as its argument(s).

Let's do a simple example. You want to remove some
specific files from a directory. Those files are listed
inside a text file.

We have 3 files: filel , file2 , file3 .

In todelete.txt we have a list of files we want to
delete, in this example filel1 and file3 :

(N] M testing — fish 1 sting — -fish — 62x7
+ testing 1s
filel file2 file3 todelete.txt
+ testing cat todelete.txt

filel
file3
» testing]

We will channel the output of cat todelete.txt to the
rm command, through xargs .

In this way:

cat todelete.txt | xargs rm

That's the result, the files we listed are now deleted:

[N] M testing — fish
+ testing 1s
filel file2 file3 todelete. txt
-+ testing cat todelete.txt
filel
file3

+ testing cat todelete.txt | xargs rm

-+ testing ls
file2 todelete. txt
+ testing

The way it works is that xargs will run rm 2 times,
one for each line returned by cat .

This is the simplest usage of xargs . There are
several options we can use.

One of the most useful in my opinion, especially when
starting to learn xargs , is -p . Using this option will
make xargs print a confirmation prompt with the
action it's going to take:

[N] testing — ca EY sting 1S -p rm — 44x5
-+ +testing cat todelete.txt | xargs -p rm
rm filel file3?...J

The -n option lets you tell xargs to perform one
iteration at a time, so you can individually confirm
them with -p . Here we tell xargs to perform one
iteration at a time with -n1 :

. O tes ting — Xar -p-n1rm]
+ testing cat todelete.txt | xargs -p -nl rm
rm file1?...[]

The -1 option is another widely used one. It allows
you to get the output into a placeholder, and then you
can do various things.

One of them is to run multiple commands:

1 | xargs -I % /bin/bash —-c 'command2 %; comr

testing cat todele
sh -c 1s filel; rm filel?...

You can swap the % symbol | used above with
anything else, it's a variable

vim

vim is a very popular file editor, especially among
programmers. It's actively developed and frequently
updated, and there's a very big community around it.
There's even a Vim conference!

vi in modern systems is just an alias to vim , which
means vi i m proved.

You start it by running vi on the command line.

VIM - Vi IMproved

version 8.0.1283
by Bram Moolenaar et al.
Vim is open source and freely distributable

Help poor children in Uganda!
type :help iccf<Enter> for information

type :q<Enter> to exit
type :help<Enter> or <F1> for on-line help
type :help version8<Enter> for version info

You can specify a filename at invocation time to edit
that specific file:

vi test.txt

https://vimconf.org/

"test.txt" [New File]

You have to know that Vim has 2 main modes:

« command (or normal) mode
« insert mode

When you start the editor, you are in command mode.
You can't enter text like you expect from a GUI-based
editor. You have to enter insert mode. You can do this
by pressing the i key. Once you do so, the -
INSERT —- word appear at the bottom of the editor:

Now you can start typing and filling the screen with the
file contents:

ocee = test—vi
Hey

This is a very cool editor

It's called Vim![i

You can move around the file with the arrow keys, or
usingthe h - j - k - 1 keys. h-1 for left-right,
j—k for down-up.

Once you are done editing you can press the esc

key to exit insert mode, and go back to command
mode.

[]
Hey

This is a very cool editor

It's called Viml

At this point you can navigate the file, but you can't
add content to it (and be careful which keys you press
as they might be commands).

One thing you might want to do now is saving the file.
You can do so by pressing : (colon), then w .

You can save and quit pressing : then w and q:

twq
You can quit without saving, pressing : then g
and ! : :q!

You can undo and edit by going to command mode

and pressing u . You can redo (cancel an undo) by

pressing ctrl-r .

Those are the basics of working with Vim. From here

starts a rabbit hole we can't go into in this little

introduction.

| will only mention those commands that will get you

started editing with Vim:

pressing the x key deletes the character
currently highlighted

pressing A goes at the end of the currently
selected line

press o to go to the start of the line

go to the first character of a word and press d
followed by w to delete that word. If you follow it
with e instead of w , the white space before the
next word is preserved

use a number between d and w to delete more
than 1 word, for example use d3w to delete 3
words forward

press d followed by d to delete a whole entire
line. Press d followed by $ to delete the entire
line from where the cursor is, until the end

To find out more about Vim | can recommend the Vim

FAQ and especially running the vimtutor command,

which should already be installed in your system and

https://vimhelp.org/vim_faq.txt.html

will greatly help you start your vim explorations.

emacs

emacs IS an awesome editor and it's historically
regarded as the editor for UNIX systems. Famously
vi Vvs emacs flame wars and heated discussions
caused many unproductive hours for developers
around the world.

emacs IS very powerful. Some people use it all day
long as a kind of operating system
(https://news.ycombinator.com/item?id=19127258).
We'll just talk about the basics here.

You can open a new emacs session simply by
invoking emacs :

test — emacs 88x27

=
lelcome to GNU Emacs, a part of the GNU operating system.

o (Hold down CTRL and press h)

© Bro LELELES -h i
C Undo changes -X u
C -x C-
M

Exit Emacs ©

v 5
the CTRL key. ‘M-' means use the Meta (or Alt) key.
If you have no Meta key, you may instead type ESC followed by the character.)

GNU Emacs 26.1 (build 1, x86_64-apple-darwinl8.2.0)
of 2019-01-16
Copyright (C) 2018 Free Software Foundation, Inc.

GNU Emacs comes with ABSOLUTELY NO WARRANTY; type C-h C-w for full details.
Emacs is Free Software—Free as in Freedom--so you can redistribute copies
of Emacs and modify it; type C-h

-UUU:%%--F1 *GNU Emacs* ALl L1 (Fundamental)
For information about GNU Emacs and the GNU system, type C-h C-a.

https://news.ycombinator.com/item?id=19127258

macOS users, stop a second now. If you are on
Linux there are no problems, but macOS does not
ship applications using GPLv3, and every built-in
UNIX command that has been updated to GPLv3
has not been updated. While there is a little
problem with the commands | listed up to now, in
this case using an emacs version from 2007 is not
exactly the same as using a version with 12 years
of improvements and change. This is not a
problem with Vim, which is up to date. To fix this,
run brew install emacs and running emacs Wwill
use the new version from Homebrew (make sure
you have Homebrew installed)

You can also edit an existing file calling emacs

<filename> .

® test —ei
File Edit Options Buffers Tools Tex
ey
This is a very cool editor

It's called Emacs!

-UU-:----F1 test.txt ALl L1 (Text)
For information about GNU Emacs and the GNU system, type C-h C-a.

You can start editing and once you are done, press
ctri-x followed by ctri-w . You confirm the folder:

file:///private/var/folders/tn/h8lfq1sj7c33c0p30qgkd3mw0000gn/C/homebrew

File Edit Options Buffers Tools Minibuf Help 5|
Hey

This is a very cool editor

It's called Emacs!

-UU-:+%—-F1 test.txt AlLL L7 (Text)
~/test

and Emacs tell you the file exists, asking you if it
should overwrite it:

® test —emacs /! iocopes/test — emacs test.txt — 88x27
File Edit Options Buffers Tools Text Help Ll
Hey

This is a very cool editor

It's called Emacs!

-UU-:%%—F1 test.txt AL L7 (Text)

Answer y , and you get a confirmation of success:

[ema s/test — emacs test.ixt — BBx27

File Edit Options Buffers Tools Text Help B|

Hey

This is a very cool editor

It's called Emacs!

-UU-:----F1 test.txt ALl L7 (Text)
Wrote /Users/flaviocopes/test/test.txt

You can exit Emacs pressing ctri-x followed by
ctri-c . Or ctrl-x followed by ¢ (keep ctrl
pressed).

There is a lot to know about Emacs. More than | am
able to write in this little introduction. | encourage you
to open Emacs and press ctrl-h r to open the
built-in manual and ctri-h t to open the official
tutorial.

nano

nano is a beginner friendly editor.
Run it using nano <filename> .

You can directly type characters into the file without
worrying about modes.

You can quit without editing using ctri-x . If you
edited the file buffer, the editor will ask you for
confirmation and you can save the edits, or discard
them. The help at the bottom shows you the keyboard
commands that let you work with the file:

° test — st2 —82x23

nano
GNU nano 2.0.6 New Buffer Modified &

testingl]

Q8 Get Help QR Writeout Q@ Read File @Y Prev Page Qi Cut Text @€ Cur Pos
B¢ Exit BB Justify @l where Is [Next Page gl UnCut Textj] To Spell

pico IS more or less the same, although nano is the

GNU version of pico which at some point in history
was not open source and the nano clone was made
to satisfy the GNU operating system license
requirements.

whoami

Type whoami to print the user name currently logged
in to the terminal session:

® @ & flavio — fish /Users/flavio — -fish — 35x5
+ ~ whoami
flavio

-» ilu-l

Note: this is different from the who am i
command, which prints more information

who

The who command displays the users logged in to
the system.

Unless you're using a server multiple people have
access to, chances are you will be the only user
logged in, multiple times:

[X
+ ~ who
flavio console Aug 13 12:52
flavio ttys@@4 Sep 2 12:22

flavio ttys@@6 Sep 2 12:26
flavio ttys@®7 Sep 3 11:39
flavio ttys@13 Aug 28 16:49

- ~]

Why multiple times? Because each shell opened will
count as an access.

You can see the name of the terminal used, and the
time/day the session was started.

The -aH flags will tell who to display more
information, including the idle time and the process ID
of the terminal:

OO H
+ ~ who -aH
USER LINE WHEN COMMENT
reboot ~ Aug 13
flavio console Aug 13
flavio ttys@@@ Aug 16 18: term=0 exit=0
flavio ttys@@4 Sep 2
flavio ttys@@6 Sep 2
flavio ttys@@7 Sep 3
flavio ttys0@8 Aug 21 : term=0 exit=0
flavio ttys@@9 Aug 15 19: term=0 exit=0
flavio ttys@1@ Aug 23 16: : term=0 exit=0
flavio ttys@ll Aug 21 10: term=0 exit=0
flavio ttys@13 Aug 28

run-level 3

The special who am i command will list the current
terminal session details:

® i f
+ ~ who am 1
flavio ttys@@4 Sep 2 12:22

-» o~

[N
+ ~ who -aH am i
USER LINE WHEN IDLE COMMENT
flavio ttys@@4 Sep 2 12:22

+ o~

SuU

While you're logged in to the terminal shell with one
user, you might have the need to switch to another
user.

For example you're logged in as root to perform some
maintenance, but then you want to switch to a user
account.

You can do so with the su command:

SuU <username>

For example: su flavio .

If you're logged in as a user, running su without
anything else will prompt to enter the root user
password, as that's the default behavior.

. '. flavio — su fUsers fflavio — su — 40=6
~ SU
Password:

su Wwill start a new shell as another user.

When you're done, typing exit in the shell will close
that shell, and will return back to the current user's
shell.

sudo

sudo is commonly used to run a command as root.

You must be enabled to use sudo , and once you do,
you can run commands as root by entering your user's
password (not the root user password).

The permissions are highly configurable, which is
great especially in a multi-user server environment,
and some users can be granted access to running
specific commands through sudo .

For example you can edit a system configuration file:

sudo nano /etc/hosts

which would otherwise fail to save since you don't
have the permissions for it.

You can run sudo -i to start a shell as root:

/flavio — bash — 42x6

+ ~ sudo -1
Password:
mbp:~ root#

You can use sudo to run commands as any user.
root is the default, but use the -u option to specify
another user:

sudo —u flavio 1ls /Users/flavio

passwd

Users in Linux have a password assigned. You can
change the password using the passwd command.

There are two situations here.

The first is when you want to change your password.
In this case you type:

passwd

and an interactive prompt will ask you for the old
password, then it will ask you for the new one:

| N flavio — passwd [Users/flavio — passwd — 35x5
+ ~ passwd
Changing password for flavio.

0ld Password:[}

When you're root (or have superuser privileges) you
can set the username of which you want to change the
password:

passwd <username> <new password>

In this case you don't need to enter the old one.

ping
The ping command pings a specific network host, on

the local network or on the Internet.

You use it with the syntax ping <host> where
<host> could be a domain name, or an |IP address.

Here's an example pinging google.com :

[X] #
+ =~ ping google.com
PING google.com (216.58.205.78): 56 data bytes
64 bytes from 216.58.205.78: icmp_seq=0 tt1=118 time=32.823 ms
64 bytes from 216.58.205.78: icmp_seq=1 tt1=118 time=39.248 ms
64 bytes from 216.58.205.78: icmp_seq=2 tt1=118 time=19.987 ms
64 bytes from 216.58.205.78: icmp_seq=3 tt1=118 time=29.539 ms

64 bytes from 216.58.205.78: icmp_seq=4 tt1=118 time=18.011 ms
AC

--- google.com ping statistics ---

5 packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 18.011/27.922/39.248/7.951 ms

+ .~

The commands sends a request to the server, and the
server returns a response.

ping keep sending the request every second, by
default, and will keep running until you stop it with
ctrl-C , unless you pass the number of times you
want to try with the -c option: ping -c 2 google.com .

Once ping is stopped, it will print some statistics
about the results: the percentage of packages lost,
and statistics about the network performance.

As you can see the screen prints the host IP address,
and the time that it took to get the response back.

Not all servers support pinging, in case the requests
times out:

[X] #i flavio
+ ~ ping flaviocopes.com
PING flaviocopes.com (167.99.137.12): 56 data bytes
Request timeout for icmp_seq @
Request timeout for icmp_seq 1
Request timeout for icmp_seq 2

Request timeout for icmp_seq 3

AC

--- flaviocopes.com ping statistics ---

5 packets transmitted, @ packets received, 100.0% packet loss

Sometimes this is done on purpose, to "hide" the
server, or just to reduce the load. The ping packets
can also be filtered by firewalls.

ping works using the ICMP protocol (/Internet
Control Message Protocol), a network layer protocol
just like TCP or UDP.

The request sends a packet to the server with the
ECHO_REQUEST message, and the server returns a
ECHO_REPLY message. | won't go into details, but this

is the basic concept.

Pinging a host is useful to know if the host is
reachable (supposing it implements ping), and how
distant it is in terms of how long it takes to get back to
you. Usually the nearest the server is geographically,
the less time it will take to return back to you, for
simple physical laws that cause a longer distance to
introduce more delay in the cables.

traceroute

When you try to reach a host on the Internet, you go
through your home router, then you reach your ISP
network, which in turn goes through its own upstream
network router, and so on, until you finally reach the
host.

Have you ever wanted to know what are the steps that
your packets go through to do that?

The traceroute command is made for this.

You invoke

traceroute <host>

and it will (slowly) gather all the information while the
packet travels.

In this example | tried reaching for my blog with

traceroute flaviocopes.com :

(X] fi flavio
-+ ~ traceroute flaviocopes.com
traceroute: Warning: flaviocopes.com has multiple addresses; using 142.93.108.123
traceroute to flaviocopes.com (142.93.108.123), 64 hops max, 52 byte packets
192.168.1.1 (192.168.1.1) 3.090 ms 2.391 ms 2.231 ms
pppoe-server.net.ngi.it (81.174.0.21) 10.697 ms 20.862 ms 21.329 ms
*x Xk X
10.40.83.89 (10.40.83.89) 374.040 ms 1258.538 ms *
10.40.4.177 (10.40.4.177) 21.893 ms 20.705 ms 20.912 ms

* %

ffm-bb2-1ink.telia.net (62.115.116.172) 28.671 ms 39.589 ms *
L
digitalocean-ic-328177-ffm-b4.c.telia.net (80.239.128.21) 172.565 ms 173.744 ms

digitalocean-ic-328178-ffm-b4.c.telia.net (80.239.128.23) 316.124 ms
* ok ¥

al
2
3
4
5
6
7
8
9

* Xk Xx
* * %

142.93.108.123 (142.93.108.123) 207.791 ms !Z 32.786 ms !Z 23.561 ms !Z

Not every router travelled returns us information. In
this case, traceroute prints x *x x . Otherwise, we
can see the hostname, the IP address, and some
performance indicator.

For every router we can see 3 samples, which means
traceroute tries by default 3 times to get you a good
indication of the time needed to reach it. This is why it
takes this long to execute traceroute compared to
simply doing a ping to that host.

You can customize this number with the -q option:

traceroute —q 1 flaviocopes.com

LN] i fla
+ ~ traceroute -q 1 flaviocopes.
traceroute: Warning: flaviocopes.com has multiple addresses; using 167.99.137.12
traceroute to flaviocopes.com (167.99.137.12), 64 hops max, 52 byte packets
192.168.1.1 (192.168.1.1) 6.441 ms
pppoe-server.net.ngi.it (81.174.0.21) 17.438 ms
*

10.40.83.89 (10.40.83.89) 30.463 ms

10.40.4.177 (10.40.4.177) 22.037 ms
mno-b2-link.telia.net (62.115.57.249) 20.573 ms
ffm-bb2-link.telia.net (62.115.116.172) 27.682 ms
*

digitalocean-ic-328178-ffm-b4.c.telia.net (8@.239.128.23) 137.439 ms
*

*
*

167.99.137.12 (167.99.137.12) 35.460 ms !Z

clear

Type clear to clear all the previous commands that
were ran in the current terminal.

The screen will clear and you will just see the prompt
at the top:

Note: this command has a handy shortcut: ctri-
L

Once you do that, you will lose access to scrolling to
see the output of the previous commands entered.

So you might want to use clear -x instead, which
still clears the screen, but lets you go back to see the
previous work by scrolling up.

history

Every time we run a command, that's memorized in
the history.

You can display all the history using:

This shows the history with numbers:

L X J
113 passwd
114 passwd -S
115 tldr wc
116 cat test >> test.txt
117 echo test >> test.txt
118 wc test.txt
119 wc -1 test.txt
120 1s -al | wc
121 1s -al | wec -1
122 +tldr open
123 open .
124 open -R test.txt
125 +tldr history
126 history
127 history
bash-3.2$ ||

You can use the syntax !<command number> to repeat
a command stored in the history, in the above
example typing !121 will repeat the 1s -al | wc -1
command.

Typically the last 500 commands are stored in the
history.

You can combine this with grep to find a command
you ran:

| grep docker

flavio— —71x8
2% history | grep docker

git clone https://github.com/docker/getting-started.git
git clone https://github.com/docker/getting-started.git
docker container stop $(docker container 1s)

docker container stop $(docker container 1s)
docker container stop $(docker container ls -aq)
history | grep docker

.25

To clear the history, run history -c

export

The export command is used to export variables to
child processes.

What does this mean?

Suppose you have a variable TEST defined in this
way:

TEST="test"

You can print its value using echo $TEST :

[I vio — bash
bash-3.2$ echo $TEST

test

bash-3.2%

But if you try defining a Bash script in a file script.sh
with the above command:

X flavio , sh
GNU nano 2.0.6 Modified

#!/bin/bash
echo $TESTH

[Read 2 lines]
Wld Get Hel WriteOu@dll Read Fild{ Prev Pa Cut Te Cur Pos
W Exit Justlfy Where IQY Next PaA UnCut To Spell

Then you set chmod u+x script.sh and you execute
this script with ./script.sh , the echo $TEST line will
print nothing!

This is because in Bash the TEST variable was
defined local to the shell. When executing a shell
script or another command, a subshell is launched to
execute it, which does not contain the current shell
local variables.

To make the variable available there we need to define
TEST not in this way:

TEST="test"

but in this way:

TEST="test"

Try that, and running ./script.sh now should print
"test":

[N] flavic
bash-3.2% export TEST="tes
bash-3.2% ./script.sh
test

bash-3.2%

Sometimes you need to append something to a
variable. It's often done with the PATH variable. You
use this syntax:

PATH=$PATH: /new/path

It's common to use export when you create new
variables in this way, but also when you create
variables in the .bash_profile or .bashrc
configuration files with Bash, orin .zshenv with Zsh.

To remove a variable, use the -n option:

-n TEST

Calling export without any option will list all the
exported variables.

crontab

Cron jobs are jobs that are scheduled to run at specific
intervals. You might have a command perform
something every hour, or every day, or every 2 weeks.
Or on weekends. They are very powerful, especially
on servers to perform maintenance and automations.

The crontab command is the entry point to work with
cron jobs.

The first thing you can do is to explore which cron jobs
are defined by you:

crontab -1

You might have none, like me:

(X}
~ crontab -1
crontab: no crontab for flavio

-~

Run

crontab -e

to edit the cron jobs, and add new ones.

By default this opens with the default editor, which is
usually vim . | like nano more, you can use this line
to use a different editor:

EDITOR=nano crontab -e

Now you can add one line for each cron job.

The syntax to define cron jobs is kind of scary. This is
why | usually use a website to help me generate it
without errors: https://crontab-generator.org/

® ® ¢ CrontabGenerator - Generate X +

C @ crontab-generator.org

Crontab Generator

© Get frustrated with Cron on your server? Try our Webcron Service.

If you want to periodically perform a task (e.q. sending Emails, backing up database, doing regular maintenance, etc.) at specified times and dates, there are
two ways to set scheduled tasks:

Method 1: Use our online cron job service that will save you a headache.
Method 2: Use Cron available in Unix/Linux systems.

If you go with method 2, the following generator can help you produce a crontab syntax that you can copy & paste to your crontab file (You can open the file
by using command | crontab e). Below the generated crontab syntax, a list of run times will be displayed too. The predictions will help you ensure that you

setthe time and date right

Complete the following form to generate a crontab line

Gtri-olick (or command-click on the Mac) to select muple entries

Minutes Hours Days.
@® Every Minute o ® Every Hour Michight ® Every Day .
Even Minutes 1 Even Hours 1am Even Days 2
Odd Minutes 2 Odd Hours 2am ") Odd Days 3
3 3am 4
Every 5 Minutes Y Every 6 Hours o Every 5 Days 5
Every 15 Minutes 5 Every 12 Hours 5am Every 10 Days 6
Every 30 Minutes 6 6am Every Half Month 7
7 7am 8
8 8am 9
9 9am 10
Months. Weekday
@ Every Month Jan @ Every Weekday sun
Even Months Feb Monday-Friday Mon
0dd Months Mar Weekend Days Tue
Apr Wed
Every 4 Months Vay T
Every Half Year Jun Fri
dul sat
Aug
sep
Oct

Gommand To Execute

Command Examples
Execute PHP script:

You pick a time interval for the cron job, and you type
the command to execute.

https://crontab-generator.org/

| chose to run a script located in
/Users/flavio/test.sh every 12 hours. This is the
crontab line | need to run:

*x x/12 * * x /Users/flavio/test.sh >/dev/null 2>&1

| run crontab -e :

EDITOR=nano crontab -e

and | add that line, then | press ctri-x and press vy
to save.

If all goes well, the cron job is set up:

[N flavio— b
bash-3.2% EDITOR=nano crontab
crontab: no crontab for flavio - using an empty one

crontab: installing new crontab
bash-3.2%
bash-3.2%

Once this is done, you can see the list of active cron
jobs by running:

crontab -1

e flavio
bash-3.2% crontab -1
* x/12 * * * [Users/flavio/test.sh >/dev/null 2>8&1

bash-3.2$ ||

You can remove a cron job running crontab -e again,
removing the line and exiting the editor:

[I flavi 5
GNU nano 2.0.6 /tmp/crontab. jOt2KZjmTC Modified

Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES) ?
YRES
| No Cancel

[I flavio — [Users/
bash-3.2$ EDITOR=nano crontab -e
crontab: installing new crontab
bash-3.2% crontab -1

bash-3.2%

uname

Calling uname without any options will return the
Operating System codename:

® #& flavio — fish /Users/flavio — -fish — 44x8
-+ ~ Uname
Darwin

- .~

The m option shows the hardware name (x86_64 in
this example) and the p option prints the processor
architecture name (i386 in this example):

[N & flavio — fish /Users/flavio
+ =~ Uname -mp
x86_64 1386

- ~

The s option prints the Operating System name. r
prints the release, v prints the version:

The

The

® # flavio — fish | flavio — -fish — 44x=8
+ ~ uname -srv
Darwin 19.6.0 Darwin Kernel Version 19.6.0:
Thu Jun 18 20:49:00 PDT 2020; root:xnu-6153.
141.1~1/RELEASE_X86_64

- ~

n option prints the node network name:

+ ~ uname -n
mbp. local

-+ ~

a option prints all the information available:

® @ flavio — fist
-+ ~ uname -a
Darwin mbp.local 19.6.9 Darwin Kernel Versio
n 19.6.0: Thu Jun 18 20:49:00 PDT 2020; root
:Xxnu-6153.141.1~1/RELEASE_X86_64 x86_64

- Pt

On macOS you can also use the sw_vers command
to print more information about the macOS Operating
System. Note that this differs from the Darwin (the
Kernel) version, which above is 19.6.0 .

Darwin is the name of the kernel of macOS. The
kernel is the "core" of the Operating System, while
the Operating System as a whole is called
macOS. In Linux, Linux is the kernel, GNU/Linux
would be the Operating System name, although
we all refer to it as "Linux"

® # flavio — fish /Users/flavio — -fish — 44x8
+ ~ SW_Vers
ProductName: Mac 0S X
ProductVersion: 10.15.6
BuildVersion: 19G2021

S |

env

The env command can be used to pass environment
variables without setting them on the outer
environment (the current shell).

Suppose you want to run a Node.js app and set the
USER variable to it.

You can run

env USER=flavio node app.js

and the USER environment variable will be accessible
from the Node.js app via the Node process.env
interface.

You can also run the command clearing all the
environment variables already set, using the -i
option:

env —-i node app.js

In this case you will get an error saying env: node: No
such file or directory because the node command
is not reachable, as the PATH variable used by the
shell to look up commands in the common paths is
unset.

So you need to pass the full path to the node
program:

env —-i /usr/ /bin/node app.js

Try with a simple app.js file with this content:

. log(process.env.NAME)
. log(process.env.PATH)

You will see the output being

undefined
undefined

You can pass an env variable:

env —-i NAME=flavio node app.js

and the output will be

flavio
undefined

Removing the -i option will make PATH available
again inside the program:

+ ~ env NAME=flavio node gpp.js
flavio

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/Apple/usr/bin

+ o~

The env command can also be used to print out all
the environment variables, if ran with no options:

env

it will return a list of the environment variables set, for
example:

HOME=/Users/flavio

LOGNAME=Tf lavio
PATH=/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/I
PwWD=/Users/flavio

SHELL=/usr/local/bin/fish

You can also make a variable inaccessible inside the
program you run, using the -u option, for example
this code removes the HoME variable from the
command environment:

env —-u HOME node app.js

printenv

A quick guide to the printenv. command, used to
print the values of environment variables

In any shell there are a good number of environment
variables, set either by the system, or by your own
shell scripts and configuration.

You can print them all to the terminal using the
printenv. command. The output will be something
like this:

HOME=/Users/flavio

LOGNAME=Tf lavio
PATH=/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin: /I
PwWD=/Users/flavio

SHELL=/usr/local/bin/fish

with a few more lines, usually.

You can append a variable name as a parameter, to
only show that variable value:

printenv PATH

o0 # flavio — fish /
+ =~ printenv PATH
/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/

Library/Apple/usr/bin

-+ ~

Conclusion

Thanks a lot for reading this book.

| hope it will inspire you to know more about Linux and
its capabilities.

	Preface
	Introduction to Linux and shells
	man
	ls
	cd
	pwd
	mkdir
	rmdir
	mv
	cp
	open
	touch
	find
	ln
	gzip
	gunzip
	tar
	alias
	cat
	less
	tail
	wc
	grep
	sort
	uniq
	diff
	echo
	chown
	chmod
	umask
	du
	df
	basename
	dirname
	ps
	top
	kill
	killall
	jobs
	bg
	fg
	type
	which
	nohup
	xargs
	vim
	emacs
	nano
	whoami
	who
	su
	sudo
	passwd
	ping
	traceroute
	clear
	history
	export
	crontab
	uname
	env
	printenv
	Conclusion

